Contents

1 Preface and General Information
 1.1 Contributions and Acknowledgements
 1.2 Features of TURBOMOLE
 1.3 How to Quote Usage of TURBOMOLE
 1.4 Modules and Their Functionality
 1.5 Tools
2 Installation of TURBOMOLE
 2.1 Install TURBOMOLE command line version
  2.1.1 Settings for each user:
  2.1.2 Setting system type and $PATH by hand
  2.1.3 Testing the installation
 2.2 Installation problems: How to solve
3 How to Run TURBOMOLE
 3.1 A ‘Quick and Dirty’ Tutorial
  3.1.1 Single Point Calculations: Running TURBOMOLE Modules
  3.1.2 Energy and Gradient Calculations
  3.1.3 Calculation of Molecular Properties
  3.1.4 Modules and Data Flow
 3.2 Parallel Runs
  3.2.1 Running Parallel Jobs — MPI case
  3.2.2 Running Parallel Jobs — SMP case
4 Preparing your input file with DEFINE
  4.0.3 Universally Available Display Commands in DEFINE
  4.0.4 Specifying Atomic Sets
  4.0.5 control as Input and Output File
  4.0.6 Be Prepared
 4.1 The Geometry Main Menu
  4.1.1 Description of commands
  4.1.2 Internal Coordinate Menu
  4.1.3 Manipulating the Geometry
 4.2 The Atomic Attributes Menu
  4.2.1 Description of the commands
 4.3 Generating MO Start Vectors
  4.3.1 The MO Start Vectors Menu
  4.3.2 Assignment of Occupation Numbers
  4.3.3 Orbital Specification Menu
  4.3.4 Roothaan Parameters
  4.3.5 Start-MOs for broken symmetry treatments ("flip")
 4.4 The General Options Menu
  4.4.1 Important commands
  4.4.2 Special adjustments
  4.4.3 Relax Options
  4.4.4 Definition of External Electrostatic Fields
  4.4.5 Properties
5 Calculation of Molecular Structure and Ab Initio Molecular Dynamics
 5.1 Structure Optimizations using the JOBEX Script
  5.1.1 Options
  5.1.2 Output
 5.2 Program STATPT
  5.2.1 General Information
  5.2.2 Hessian matrix
  5.2.3 Finding Minima
  5.2.4 Finding transition states
 5.3 Program Relax
  5.3.1 Purpose
  5.3.2 Optimization of General Coordinates
  5.3.3 Force Constant Update Algorithms
  5.3.4 Definition of Internal Coordinates
  5.3.5 Structure Optimizations Using Internal Coordinates
  5.3.6 Structure Optimization in Cartesian Coordinates
  5.3.7 Optimization of Basis Sets (SCF only)
  5.3.8 Simultaneous Optimization of Basis Set and Structure
  5.3.9 Optimization of Structure and a Global Scaling Factor
  5.3.10 Conversion from Internal to Cartesian Coordinates
  5.3.11 Conversion of Cartesian Coordinates, Gradients and Force Constants to Internals
  5.3.12 The m-Matrix
  5.3.13 Initialization of Force Constant Matrices
  5.3.14 Look at Results
 5.4 Force Field Calculations
  5.4.1 Purpose
  5.4.2 How to Perform a UFF Calculation
  5.4.3 The UFF implementation
 5.5 Molecular Dynamics Calculations
 5.6 Global Structure Optimization – The DODO Program
  5.6.1 Genetic Algorithm
  5.6.2 How to Perform
  5.6.3 The DODO Input File
 5.7 Counterpoise-Corrections using the JOBBSSE Script
  5.7.1 Options
  5.7.2 Output
 5.8 Reaction Path Optimization
  5.8.1 Background and Program structure
  5.8.2 Input Structure
  5.8.3 How it works
6 Hartree–Fock and DFT Calculations for Molecular Systems
 6.1 Background Theory
 6.2 Exchange-Correlation Functionals Available
  6.2.1 Exchange-Correlation Functionals from XCFun library
 6.3 Restricted Open-Shell Hartree–Fock
  6.3.1 Brief Description
  6.3.2 One Open Shell
  6.3.3 More Than One Open Shell
  6.3.4 Miscellaneous
 6.4 Relativistic effects
  6.4.1 One- and two-component relativistic methods
  6.4.2 How to use
 6.5 Dispersion Correction for DFT Calculations
 6.6 Energy Decomposition Analysis (EDA)
  6.6.1 How to perform
7 DFT Calculations for Molecular and Periodic Systems
 7.1 Functionalities of RIPER
 7.2 Theoretical Background
  7.2.1 Kohn-Sham DFT for Molecular and Periodic Systems
  7.2.2 RI-CFMM Approach
  7.2.3 k Point Sampling Scheme
  7.2.4 Metals and Semiconductors: Gaussian Smearing
  7.2.5 Low-Memory Iterative Density Fitting Method
 7.3 How to Perform a Calculation
  7.3.1 Basis Sets for Periodic Calculations
  7.3.2 Prerequisites
  7.3.3 Creating the Input File
  7.3.4 Single Point Energy and Gradient
  7.3.5 Structure Optimization
  7.3.6 Optimization of Cell Parameters
  7.3.7 Band Structure Plots
  7.3.8 Calculation of Densities and MOs on Grids
  7.3.9 Density of States
8 Hartree–Fock and DFT Response Calculations: Stability, Dynamic Response Properties, and Excited States
 8.1 Functionalities of Escf and Egrad
 8.2 Theoretical Background
 8.3 Implementation
 8.4 How to Perform
  8.4.1 Preliminaries
  8.4.2 Polarizabilities and Optical Rotations
  8.4.3 Stability Analysis
  8.4.4 Vertical Excitation and CD Spectra
  8.4.5 Excited State Geometry Optimizations
  8.4.6 Excited State Force Constant Calculations
  8.4.7 Polarizability Derivatives and Raman Spectra
9 Second-order Møller–Plesset Perturbation Theory
 9.1 Functionalities of mpgrad, ricc2, and pnoccsd
  9.1.1 How to quote
 9.2 Some Theory
 9.3 How to Prepare and Perform MP2 Calculations
 9.4 General Comments on MP2 Calculations, Practical Hints
 9.5 RI-MP2-F12 Calculations
 9.6 LT-SOS-RI-MP2 with O(N4) scaling costs
 9.7 OSV-PNO-MP2 and OSV-PNO-MP2-F12 calculations
10 Second-Order Approximate Coupled-Cluster (CC2) Calculations
 10.1 CC2 Ground-State Energy Calculations
 10.2 Calculation of Excitation Energies
 10.3 First-Order Properties and Gradients
  10.3.1 Ground State Properties, Gradients and Geometries
  10.3.2 Excited State Properties, Gradients and Geometries
  10.3.3 Visualization of densities and Density analysis
  10.3.4 Fast geometry optimizations with RI-SCF based gradients
 10.4 Transition Moments
  10.4.1 Ground to excited state transition moments
  10.4.2 Transition moments between excited states
  10.4.3 Ground to excited state two-photon transition moments
  10.4.4 Phosphorescence lifetimes using SOC-PT-CC2
 10.5 Ground State Second-order Properties with MP2 and CC2
 10.6 Parallel RI-MP2 and RI-CC2 Calculations
 10.7 Spin-component scaling approaches (SCS/SOS)
11 CCSD, CCSD(F12*) and CCSD(T) calculations
 11.1 Characteristics of the Implementation and Computational Demands
12 Random Phase Approximation Calculations: Energy and First-Order Properties
 12.1 Ground State Energy Theory
 12.2 Gradients Theory
 12.3 Further Recommendations
 12.4 Comments on the Output
13 Many body perturbation theory in the GW approximation
 13.1 Single particle spectra based on the GW approximation
  13.1.1 Theoretical background
  13.1.2 GW features
  13.1.3 General recipe for G0W0 calculations
 13.2 Excitation energies from BSE
  13.2.1 Theoretical background
  13.2.2 BSE features
  13.2.3 General recipe for a BSE calculation
14 Calculation of Vibrational Frequencies and Vibrational Spectra
 14.1 Analysis of Normal Modes in Terms of Internal Coordinates
 14.2 Calculation of Raman Spectra
 14.3 Calculation of VCD Spectra
 14.4 Vibrational frequencies with fixed atoms using NumForce
 14.5 Interface to hotFCHT
15 First order electron-vibration coupling
 15.1 Theoretical background
 15.2 evib features
 15.3 General usage of evib
16 Calculation of NMR Shieldings
 16.1 Prerequisites
 16.2 How to Perform a SCF of DFT Calculation
 16.3 How to Perform a MP2 calculation
 16.4 Chemical Shifts
 16.5 Other Features and Known Limitations
17 Embedding and Solvation Effects
 17.1 Charge and multipole embedding
 17.2 Treatment of Solvation Effects with Cosmo
 17.3 Frozen Density Embedding calculations
  17.3.1 Background Theory
  17.3.2 Frozen Density Embedding calculations using the FDE script
  17.3.3 Options
  17.3.4 FDE with hybrid and orbital-dependent functionals
 17.4 Periodic Electrostatic Embedded Cluster Method
  17.4.1 General Information
  17.4.2 Theoretical Background
  17.4.3 Calculation Setup
 17.5 Polarizable embedding calculations
  17.5.1 Theory
  17.5.2 Computational details: SCF calculations
  17.5.3 Computational details: PERI-CC2 calculations
18 Molecular Properties, Wavefunction Analysis, and Interfaces to Visualization Tools
 18.1 Molecular Properties, Wavefunction Analysis, and Localized Orbitals
  18.1.1 Selection of densities
  18.1.2 Electrostatic moments
  18.1.3 Relativistic corrections
  18.1.4 Population analyses
  18.1.5 Generation of localized MOs
  18.1.6 Intrinsic Bond Orbitals Analysis
 18.2 Interfaces to Visualization Tools
19 Orbital Dependent Kohn-Sham Density Functional Theory
 19.1 Theoretical Background
 19.2 Implementation
  19.2.1 OEP-EXX
  19.2.2 LHF
 19.3 How to Perform
 19.4 How to plot the exchange potential
 19.5 How to quote
20 Keywords in the control file
 20.1 Introduction
 20.2 Format of Keywords and Comments
  20.2.1 Keywords for System Specification
  20.2.2 Keyword for the General Memory Specification
  20.2.3 Other General Keywords
  20.2.4 Keywords for redundant internal coordinates in $redund_inp
  20.2.5 Keywords for Module uff
  20.2.6 Keywords for Module woelfling
  20.2.7 Keywords for Modules dscf and ridft
  20.2.8 Keywords for Point Charge Embedding
  20.2.9 Keywords for Periodic Electrostatic Embedded Cluster Method
  20.2.10 Keywords for COSMO
  20.2.11 Keywords for Module riper
  20.2.12 Keywords for Modules grad and rdgrad
  20.2.13 Keywords for Module aoforce
  20.2.14 Keywords for Module evib
  20.2.15 Keywords for Module escf
  20.2.16 Keywords for Module rirpa
  20.2.17 Keywords for Module egrad
  20.2.18 Keywords for Module mpgrad
  20.2.19 Keywords for Module ricc2
  20.2.20 Keywords for Module ccsdf12
  20.2.21 Keywords for Module pnoccsd
  20.2.22 Keywords for Module relax
  20.2.23 Keywords for Module statpt
  20.2.24 Keywords for Module moloch
  20.2.25 Keywords for wave function analysis and generation of plotting data
  20.2.26 Keywords for Module frog
  20.2.27 Keywords for Module mpshift
  20.2.28 Keywords for Parallel Runs
21 Sample control files
 21.1 Introduction
 21.2 NH3 Input for a RHF Calculation
 21.3 NO2 input for an unrestricted DFT calculation
 21.4 TaCl5 Input for an RI-DFT Calculation with ECPs
 21.5 Basisset optimization for Nitrogen
 21.6 ROHF of Two Open Shells
22 The Perl-based Test Suite Structure
 22.1 General
 22.2 Running the tests
 22.3 Taking the timings and benchmarking
 22.4 Modes and options of the TTEST script
Bibliography
Index