1.3 How to Quote Usage of TURBOMOLE

Please quote the usage of the program package under consideration of the version number:

TURBOMOLE V7.2 2017, a development of University of Karlsruhe and
Forschungszentrum Karlsruhe GmbH, 1989-2007,
TURBOMOLE GmbH, since 2007; available from

A LaTeX template could look like this:
title = {{TURBOMOLE V7.2 2017}, a development of {University of Karlsruhe} and 
         {Forschungszentrum Karlsruhe GmbH}, 1989-2007, 
         {TURBOMOLE GmbH}, since 2007; available from \\ 
         {\tt http://www.turbomole.com}.}} 

Scientific publications require proper citation of methods and procedures employed. The output headers of TURBOMOLE modules include the relevant papers. One may also use the following connections between: method [module] number in the subsequent list (For module ricc2 see also Section 10).

Further references of papers not from the TURBOMOLE group are given in the bibliography. The following publications describe details of the methodology implemented in TURBOMOLE:


Electronic Structure Calculations on Workstation Computers: The Program System TURBOMOLE. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel; Chem. Phys. Letters 162, 165 (1989).
Improvements on the Direct SCF Method. M. Häser and R. Ahlrichs; J. Comput. Chem. 10, 104 (1989).
Semi-direct MP2 Gradient Evaluation on Workstation Computers: The MPGRAD Program. F. Haase and R. Ahlrichs; J. Comp. Chem. 14, 907 (1993).
Efficient Molecular Numerical Integration Schemes.
O. Treutler and R. Ahlrichs; J. Chem. Phys. 102, 346 (1995).
Stability Analysis for Solutions of the Closed Shell Kohn–Sham Equation. R. Bauernschmitt and R. Ahlrichs; J. Chem. Phys. 104, 9047 (1996).
Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory.
R. Bauernschmitt and R. Ahlrichs; Chem. Phys. Letters 256, 454 (1996).
Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. R. Bauernschmitt, M. Häser, O. Treutler and R. Ahlrichs; Chem. Phys. Letters 264, 573 (1997).
RI-MP2: first derivatives and global consistency. F. Weigend and M. Häser; Theor. Chem. Acc. 97, 331 (1997).
A direct implementation of the GIAO-MBPT(2) method for calculating NMR chemical shifts. Application to the naphthalenium and anthracenium ions. M. Kollwitz and J. Gauss; Chem. Phys. Letters 260, 639 (1996).
Parallelization of Density Functional and RI-Coulomb Approximation in TURBOMOLE. M. v. Arnim and R. Ahlrichs; J. Comp. Chem. 19, 1746 (1998).
Geometry optimization in generalized natural internal Coordinates.
M. v. Arnim and R. Ahlrichs; J. Chem. Phys. 111, 9183 (1999).
CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. C. Hättig and F. Weigend; J. Chem. Phys. 113, 5154 (2000).
Implementation of RI-CC2 for triplet excitation energies with an application to trans-azobenzene. C. Hättig and Kasper Hald; Phys. Chem. Chem. Phys. 4 2111 (2002).
First-order properties for triplet excited states in the approximated Coupled Cluster model CC2 using an explicitly spin coupled basis. C. Hättig, A. Köhn and Kasper Hald; J. Chem. Phys. 116, 5401 (2002) and Vir. J. Nano. Sci. Tech., 5 (2002).
Transition moments and excited-state first-order properties in the coupled-cluster model CC2 using the resolution-of-the-identity approximation.
C. Hättig and A. Köhn; J. Chem. Phys. 117, 6939 (2002).
An efficient implementation of second analytical derivatives for density functional methods. P. Deglmann, F. Furche and R. Ahlrichs; Chem. Phys. Letters 362, 511 (2002).
Efficient characterization of stationary points on potential energy surfaces.
P. Deglmann and F. Furche; J. Chem. Phys. 117, 9535 (2002).
An improved method for density functional calculations of the frequency-dependent optical rotation.
S. Grimme, F. Furche and R. Ahlrichs; Chem. Phys. Letters 361,321 (2002).
Adiabatic time-dependent density functional methods for excited state properties. F. Furche and R. Ahlrichs; J. Chem. Phys. 117, 7433 (2002), J. Chem. Phys. 121, 12772 (2004) (E).
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency. F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002)
Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation. C. Hättig; J. Chem. Phys. 118, 7751, (2003).
Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation. A. Köhn and C. Hättig; J. Chem. Phys., 119, 5021, (2003).
Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. M. Sierka, A. Hogekamp and R. Ahlrichs;J. Chem. Phys. 118, 9136, (2003).
Nuclear second analytical derivative calculations using auxiliary basis set expansion. P. Deglmann, K. May, F. Furche and R. Ahlrichs; Chem. Phys. Letters 384, 103, (2004).
Efficient evaluation of three-center two-electron integrals over Gaussian functions. R. Ahlrichs; Phys. Chem. Chem. Phys. 6, 5119, (2004).
Analytical time-dependent density functional derivative methods within the RI-J approximation, an approach to excited states of large molecules. D. Rappoport and F. Furche, J. Chem. Phys. 122, 064105 (2005).
Density functional theory for excited states: equilibrium structure and electronic spectra. F. Furche and D. Rappoport, Ch. III of "Computational Photochemistry", Ed. by M. Olivucci, Vol. 16 of "Computational and Theoretical Chemistry", Elsevier, Amsterdam, 2005.
Structure optimizations for excited states with correlated second-order methods: CC2, CIS(D), and ADC(2). Christof Hättig, Adv. Quant. Chem., 50, 37-60 (2005).
Distributed memory parallel implementation of energies and gradients for second-order Møller-Plesset perturbation theory with the resolution-of-the-identity approximation. Christof Hättig, Arnim Hellweg, Andreas Köhn, Phys. Chem. Chem. Phys. 8, 1159-1169, (2006).
Self-consistent treatment of spin-orbit interactions with efficient Hartree-Fock and density functional methods. Markus K. Armbruster, Florian Weigend, Christoph van Wüllen, Wim Klopper, Phys. Chem. Chem. Phys. 10, 1748 - 1756, (2008).
Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets. David P. Tew, Wim Klopper, Christian Neiss, Christof Hättig, Phys. Chem. Chem. Phys. 9 921–1930 (2007).
Benchmarking the performance of spin-component scaled CC2 in ground and electronically excited states. Arnim Hellweg, Sarah A. Grün, Christof Hättig, Phys. Chem. Chem. Phys., 10, 4119-4127 (2008).
Scaled opposite-spin CC2 for ground and excited states with fourth order scaling computational costs. Nina O. C. Winter, Christof Hättig, J. Chem. Phys., 134, 184101 (2011).
and: Quartic scaling analytical gradients of scaled opposite-spin CC2. Nina O. C. Winter, Christof Hättig, Chem. Phys. 401 (2012) 217.
The MP2-F12 Method in the TURBOMOLE Programm Package. Rafal A. Bachorz, Florian A. Bischoff, Andreas Glöß, Christof Hättig, Sebastian Höfener, Wim Klopper, David P. Tew, J. Comput. Chem. 32, 2492–2513 (2011).
Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. Christof Hättig, David P. Tew, Andreas Köhn, J. Chem. Phys. 132, 231102 (2010).
Large scale polarizability calculations using the approximate coupled cluster model CC2 and MP2 combined with the resolution-of-the identity approximation. Daniel H. Friese, Nina O. C. Winter, Patrick Balzerowski, Raffael Schwan, Christof Hättig, J. Chem. Phys., 136, 174106 (2012).
A O(N3)-scaling PNO-MP2 method using a hybrid OSV-PNO approach with an iterative direct generation of OSVs. Gunnar Schmitz, Benjamin Helmich, Christof Hättig, Mol. Phys. 111, 2463–2476, (2013).
Explicitly correlated PNO-MP2 and PNO-CCSD and its application to the S66 set and large molecular systems. Gunnar Schmitz, Christof Hättig, David Tew, Phys. Chem. Chem. Phys. 16, 22167–22178 (2014).
Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole methods. Roman Łazarski, Asbjörn M. Burow, Marek Sierka, J. Chem. Theory Comput. 11, 3029–3041 (2015).
Low-memory iterative density fitting. Lukáš Grajciar, J. Comput. Chem. 36, 1521–1535 (2015).
Linear scaling hierarchical integration scheme for the exchange-correlation term in molecular and periodic systems. A. M. Burow, M. Sierka, J. Chem. Theory Comput. 7, 3097–3104 (2011).
Resolution of identity approximation for the Coulomb term in molecular and periodic systems. A. M. Burow, M. Sierka, F. Mohamed, J. Chem. Phys. 131, 214101 (2009).
Efficient self-consistent implementation of local hybrid functionals. H. Bahmann, M. Kaupp, J. Chem. Theory Comput., 11, 1540–1548, (2015).
Implementation of molecular gradients for local hybrid density functionals using seminumerical integration techniques. S. Klawohn, H. Bahmann, M. Kaupp, J. Chem. Theory Comput. 12, 4254–4262, (2016).
Efficient semi-numerical implementation of global and local hybrid functionals for time-dependent density functional theory. T. M. Maier, H. Bahmann, M. Kaupp, J. Chem. Theory Comput. 11, 4226–4237, (2015).

Basis sets

The following tables can be used to find the proper citations of the standard orbital and auxiliary basis sets in the TURBOMOLE basis set library.

Orbital basis sets, elements H–Kr  

H,He Li Be B–Ne Na,Mg Al–Ar K Ca Sc–Zn Ga–Kr

SVP,SV(P) r a a a a a a a a a

TZVP r b b b b b b b b b

TZVPP r f f f f f f f f f


def2-SV(P) r j a a j a j a a a

def2-SVP r j a a j a j a j a

def2-TZVP r f j f j j j f j f

def2-TZVPP r j j f j j j f j f


Note: For H–Kr def-SV(P), def-SVP, ... are identical with the basis sets without def prefix. def2-QZVPP and def2-QZVP are identical with QZVPP and QZVP.
def2-XVPD/XVPPD denotes the property–optimized augmentations def2-SVPD, def2-TZVPD, def2- TZVPPD, def2-QZVPD,def2-QZVPPD.

Orbital basis sets, elements Rb–Rn  

Rb Sr Y–Cd In–Cs Ba La–Hg Tl–At Rn

def-SVP,def-SV(P),def-TZVP d d d d d d d j

def-TZVPP f d f f d f d j

def2-SV(P) j d d j d d j j

def2-SVP j d j j d j j j




Auxiliary basis sets for RI-DFT (Coulomb fitting)  

H–Kr Rb–At Rn

(def-)SVP,(def-)SV(P) c d l

(def-)TZVP d d l

def2 universal

Auxiliary basis sets for RI-MP2 and RI-CC, elements H–Ar  

H He Li Be B–F Ne Na,Mg Al–Cl Ar

SVP,SV(P) f k f f f k f f k

TZVP,TZVPP f k f f f k f f k


def2-SV(P) f k m f f k m f k

def2-SVP f k m f f k m f k

def2-TZVP,def2-TZVPP f k f m f k m m k


(aug-)cc-pVXZ, X=D–Q h h k k h h k h h

(aug-)cc-pV5Z k k - - k k - k k

cc-pwCVXZ, X=D–5 - - - - k k - k k

Note: the auxiliary basis sets for the (aug-)cc-pV(X+d)Z basis sets for Al–Ar are identical with the (aug-)cc-pVXZ auxiliary basis sets.

Auxiliary basis sets for RI-MP2 and RI-CC, elements K–Kr  

K Ca Sc–Zn Ga–Br Kr

SVP,SV(P) f f f f k

TZVP,TZVPP f f f f k


def2-SV(P) m f f f k

def2-SVP m f m f k

def2-TZVP,def2-TZVPP m f m f k


(aug-)cc-pVXZ, X=D–Q - - - h h

(aug-)cc-pV5Z - - - p p

cc-pCWVXZ, X=D–5 - - - p p

(aug-)cc-pVXZ-PP, X=D–5 - - - p p

cc-pwCVXZ-PP, X=D–5 - - - p p

Auxiliary basis sets for RI-MP2 and RI-CC, elements Rb–Rn  

Rb Sr Y–Cd In–Xe Cs Ba La–Hg Tl–At Rn

def-SVP,def-SV(P) m

def2-SVP,def2-SV(P) m f f m m f f m m

def-TZVP,def-TZVPP m




aug-cc-pVXZ-PP, X=D–5 - - - p - - - p p

cc-pwCVXZ-PP, X=D–5 - - - p - - - p p

Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. A. Schäfer, H. Horn and R. Ahlrichs; J. Chem. Phys. 97, 2571 (1992).
Fully Optimized Contracted Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr. A. Schäfer, C. Huber and R. Ahlrichs; J. Chem. Phys. 100, 5829 (1994).
Auxiliary Basis Sets to Approximate Coulomb Potentials. K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs; Chem. Phys. Letters 242, 652 (1995).
Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs; Theor. Chem. Acc. 97, 119 (1997).
Accurate Coulomb-fitting basis sets for H to Rn. F. Weigend; Phys. Chem. Chem. Phys. 8, 1057 (2006).
RI-MP2: Optimized Auxiliary Basis Sets and Demonstration of Efficiency. F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs; Chem. Phys. Letters 294, 143 (1998).
Contracted all-electron Gaussian basis sets for Rb to Xe. R. Ahlrichs and K. May; Phys. Chem. Chem. Phys., 2, 943 (2000).
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. F. Weigend, A. Köhn and C. Hättig; J. Chem. Phys. 116, 3175 (2002).
Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. F. Weigend, F. Furche and R. Ahlrichs; J. Chem. Phys. 119, 12753 (2003).
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design an assessment of accuracy. F. Weigend and R. Ahlrichs; Phys. Chem. Chem. Phys. 7, 3297 (2005).
Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculation: Core-valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. C. Hättig; Phys. Chem. Chem. Phys. 7, 59 (2005).
Accurate Coulomb-fitting basis sets for H to Rn. F. Weigend; Phys. Chem. Chem. Phys. 8, 1057 (2006).
Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. A. Hellweg, C. Hättig, S. Höfener and W. Klopper; Theor. Chem. Acc. 117, 587 (2007).
Property–optimized Gaussian basis sets for molecular response calculations. D. Rappoport and F. Furche; J. Chem. Phys. 133, 134105 (2010).
Segmented contracted basis sets for one– and two–component Dirac–Fock effective core potentials. F. Weigend and A. Baldes; J. Chem. Phys. 133, 174102 (2010).
Auxiliary basis sets for density-fitted correlated wavefunction calculations: Weighted core-valence and ECP basis sets for post-d elements. C. Hättig, G. Schmitz, J. Koßmann; Phys. Chem. Chem. Phys. 14, 6549 (2012).
Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. A. Hellweg and D. Rappoport; Phys. Chem. Chem. Phys. 17, 1010 (2015).